

Wastewater regeneration using solar technologies on a demonstration scale

José Antonio Sánchez Pérez

Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT

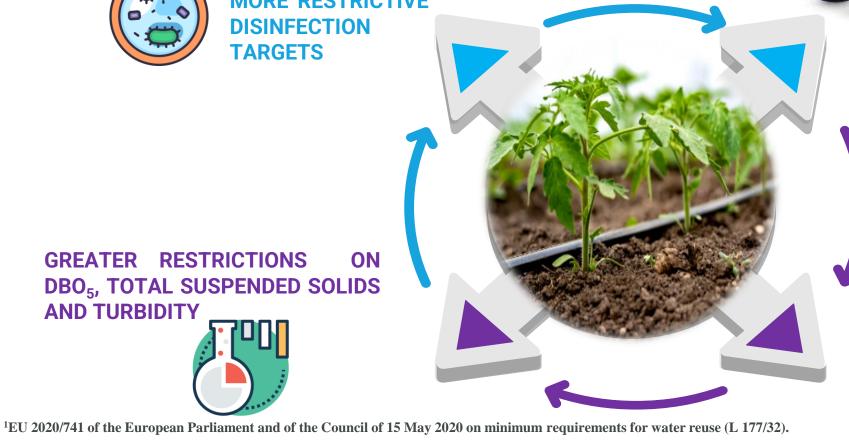
Solar Energy Research Center (CIESOL)

Joint Centre University of Almería-Plataforma Solar de Almería

- Physicists
- Chemists
- Biologists
- Industrial engineers
- Chemical engineers

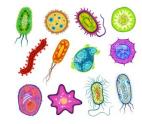
- ✓ Water treatment (desalination, decontamination, microalgae)
- ✓ Control, modelling and optimization of solar processes
- Medium and high temperature solar thermal energy
- Integration of thermal and photovoltaic energy in buildings

CHALLENGES TOWARDS THE USE OF REGENERATED WATER IN AGRICULTURE


EU Regulation 2020/741

MORE RESTRICTIVE DISINFECTION **TARGETS**

GREATER RESTRICTIONS ON **DBO₅, TOTAL SUSPENDED SOLIDS AND TURBIDITY**



PERSISTENT INDICATOR MICROORGANISMS

MICROCONTAMINANTS STIPULATED IN THE RISK MANAGEMENT PLAN

EU regulation: water reuse (EU 2020/741)

Table 2 – Reclaimed water quality requirements for agricultural irrigation

		Ĩ	V 1	0		0				
Reclaimed water quality class	Indicative technology target	Quality requirements								
		<i>E. coli</i> (number/100 ml)	BOD ₅ * (mg/l)	TSS** (mg/l)	Turbidity (NTU)	Other				
А	Secondary treatment, filtration, and disinfection	≤10	≤10	≤10	≤5	<i>Legionella</i> spp.: < 1 000 cfu/lwhere there is a risk of aerosolisation				
В	Secondary treatment, and disinfection	≤ 100 In accordance with		In accordance with		Intestinal nematodes (helminth eggs): ≤ 1 egg/lfor irrigation of pastures or forage				
С	Secondary treatment, and disinfection	< 1 (10)	Directive 91/271/EEC				< 1(000)	Directive 91/271/EEC	-	
D	Secondary treatment, and disinfection	≤ 10 000	(Annex I, Table 1)	(Annex I, Table 1)	-					

*BOD₅: Biochemical oxygen demand

**TSS : Total suspended solids

• The concept of micro-pollutants is introduced in this legislation, although specific limits have not yet been established.

Risk management plan

«Identify any additional water quality requirements necessary to ensure sufficient protection of the environment and of human and animal health»

New proposal concerning urban wastewater treatment - Directive COM(2022) 541

Brussels, 26.10.2022 COM(2022) 541 final

ANNEXES

to the Proposal for a

IRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

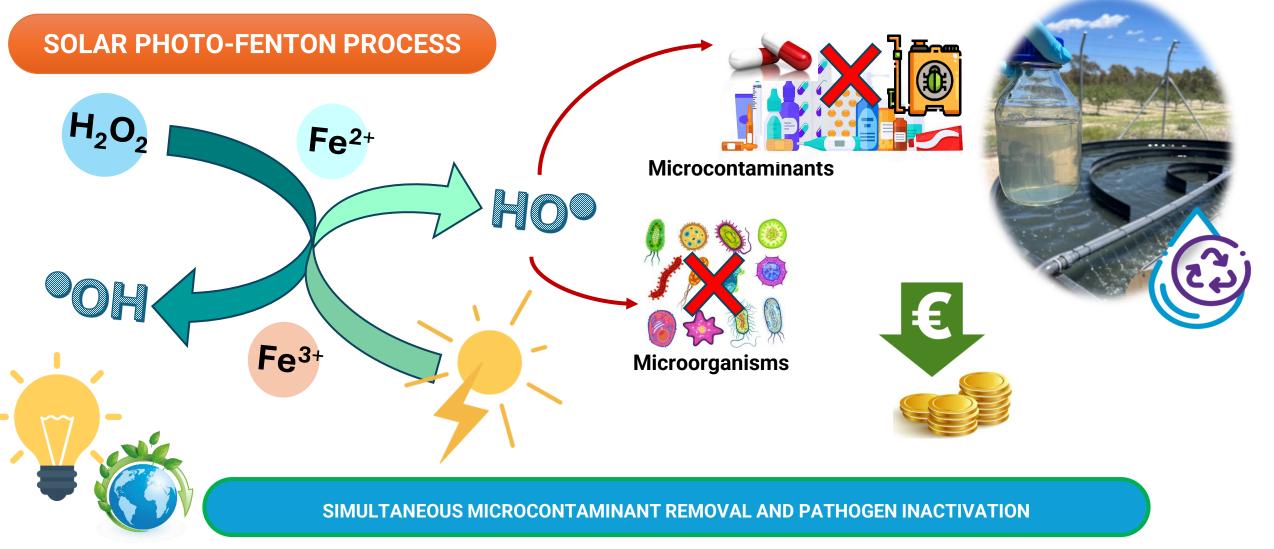
concerning urban wastewater treatment (recast)

Energy neutrality

. . .

Low energy demanding solutions and technologies, energy recovery,

Table 3: Requirements for quaternary treatment of discharges from urban wastewater treatment plants referred to in Article 8(1) and (3).

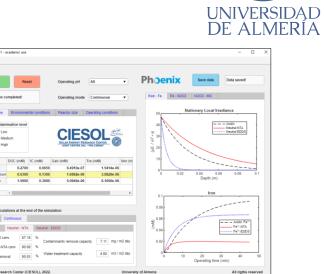

Indicators	Minimum percentage of removal			
Substances that can pollute water even at low concentrations	80%			
Note 1: The concentration of the organic subs measured.	tances referre to (a) and (b) shall be			
(a) Category 1 (substances that can be very	v easily treated):			
(i) Amisulprid (CAS No 71675-85-9),	,			
(ii) Carbamazepine (CAS No 298-46-4	4),			
(iii) Citalopram (CAS No 59729-33-8)),			
(iv) Clarithromycin (CAS No 81103-1	1-9),			
(v) Diclofenac (CAS No 15307-86-5),	,			
(vi)— Hydrochlorothiazide (CAS No	58-93-5),			
(vii) Metoprolol (CAS No 37350-58-6	5),			
(viii)— Venlafaxine (CAS No 93413-	69-5);			
(b) Category 2 (substances that can be easily di	isposed of):			
(i) Benzotriazole (CAS No 95-14-7),				
(ii) Candesartan (CAS No 139481-59-	-7),			
(iii) Irbesartan (CAS No 138402-11-6)),			
(iv) mixture of 4-Methylbenzotriaz	zole (CAS No 29878-31-7) and 6-methyl-			

benzotriazole (CAS No 136-85-6).

Advanced oxidation processes (AOPs)

OANUKIS

CIESOL


UNIVERSIDA DE ALMER

The solar photo-Fenton process & raceway pond reactors

	State	of the art			
	 Arzate et al., First continuous flow scale focused on CEC Chem. Eng. J. 316:112 	removal	 Sánchez Pérez et al., Solar photo-Fenton cost estimation at pilot scale Sci. Total Environ. 736:139681 		
2014			DEMONSTRATI		
20	17	20)20		
• Carra et al.,	•	De la Obra et al.,		*	
• Excess of photons in tubular reactors Sci. Total Environ. 478:123-132		 First continuous flow scale focused on disin Appl. Catal. B-Environ. 	ifection		
WWTP secondary effl	Proposal for the use of RPR to treat VWTP secondary effluents J. Hazard. Mater. 279:322-329		odel for RPR design		

Solar photo-Fenton treatment plant

Paqualia

El Bobar WWTP, Almería (Spain)

�≘∵♥⋈

aqualia

 $100-m^2 RPR$ Liquid depth: 10 – 18 cm

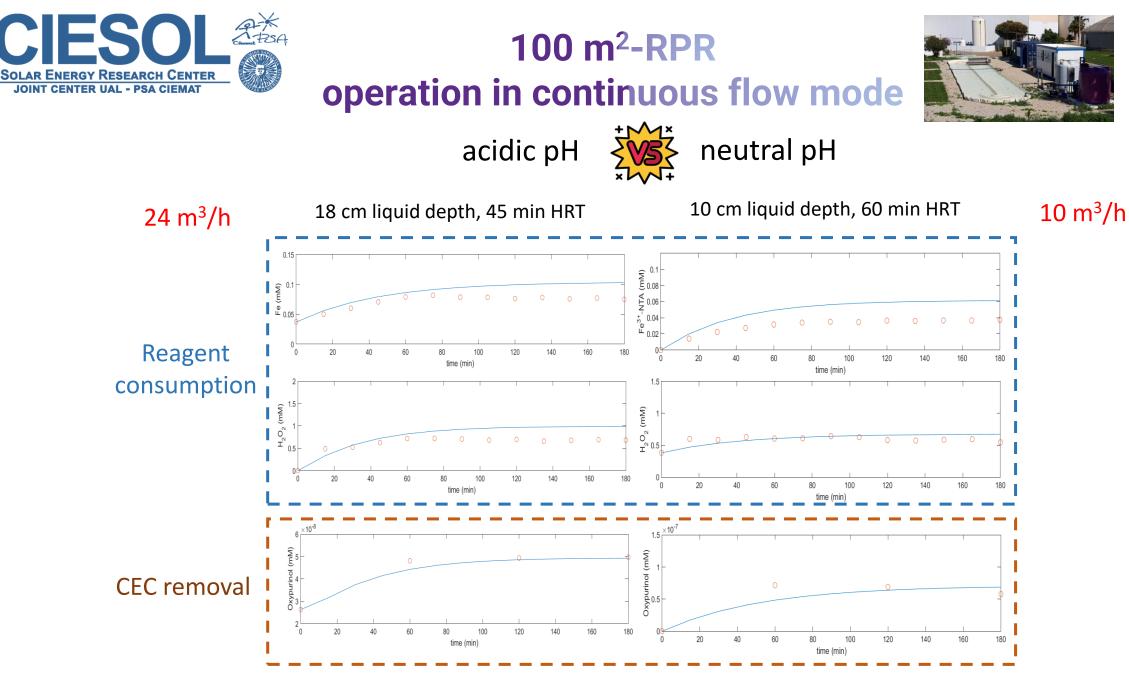
CIESOI

LIFE18 ENV/ES/000165)

Solar photo-Fenton treatment plant

Gualda-Alonso et al., Applied Catalysis B: Environmental 319: 121795 (2022)

D Calcium carbonate filter


E Storage tank

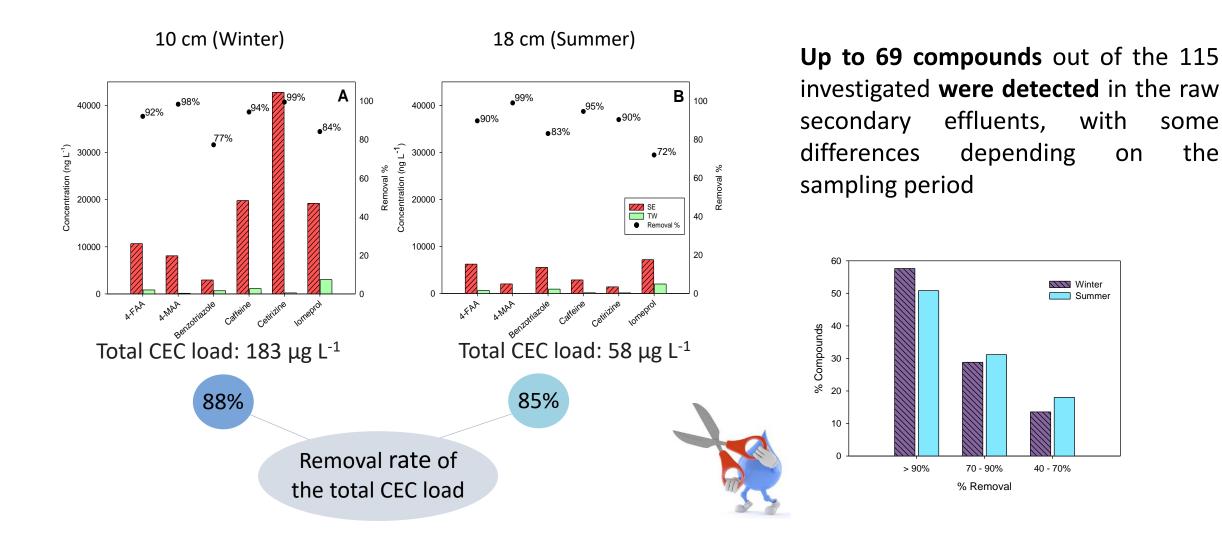
B Dosing pump

Gualda-Alonso et al., Journal of Hazardous Materials 132101 (2023)

UNIVERSIDAD DE ALMERÍA

some

on

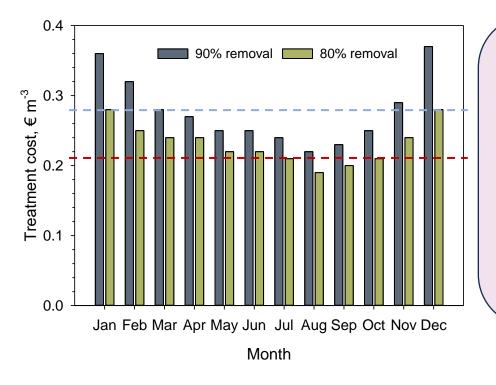

Winter

40 - 70%

Summer

the

Continuous flow operation

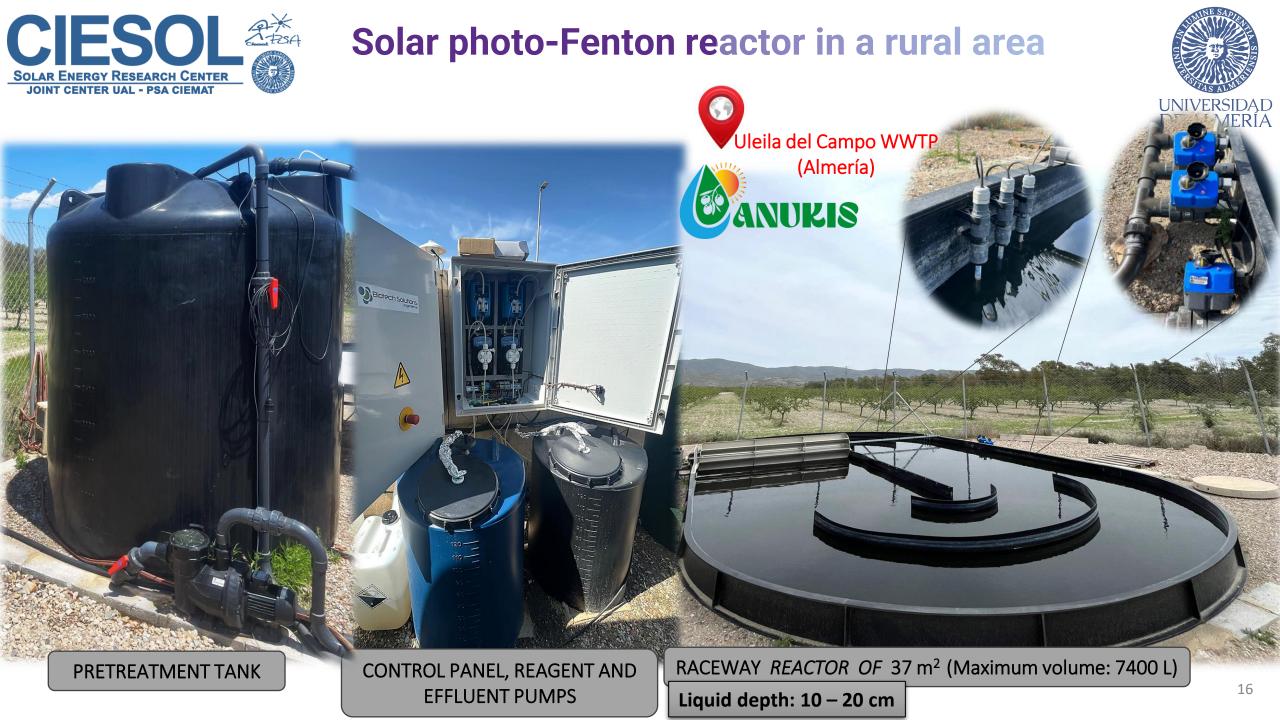


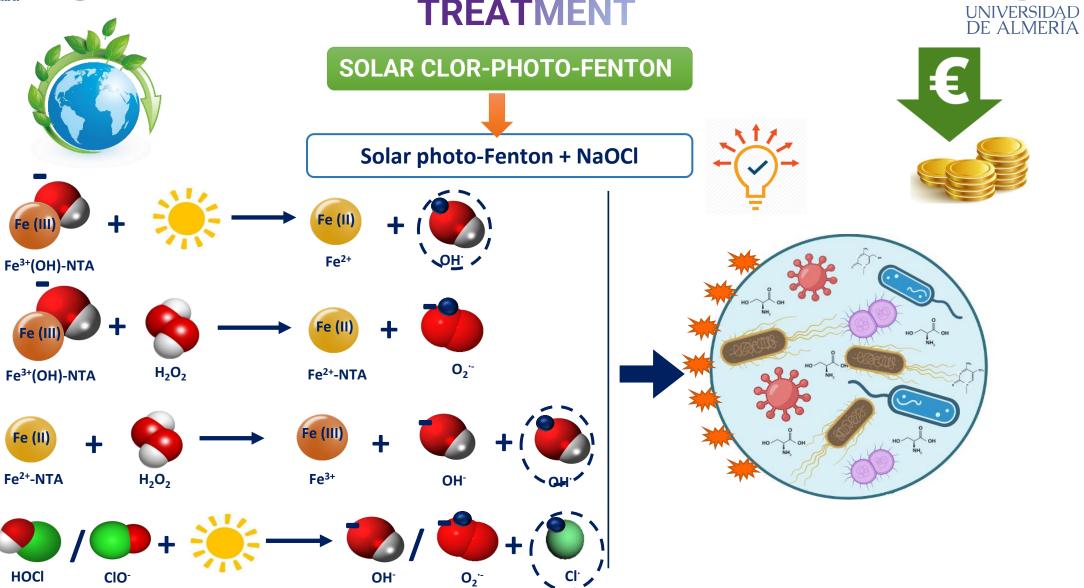
13

Economic assessment

1 m² of RPR surface area can reclaim water to supply the dailywater requirements of 1,000 m² of greenhouse-grown vegetables.

The average annual treatment cost estimated at 0.23 € m⁻³ for 80% CEC removal and 0.28 € m⁻³ for a 90%.

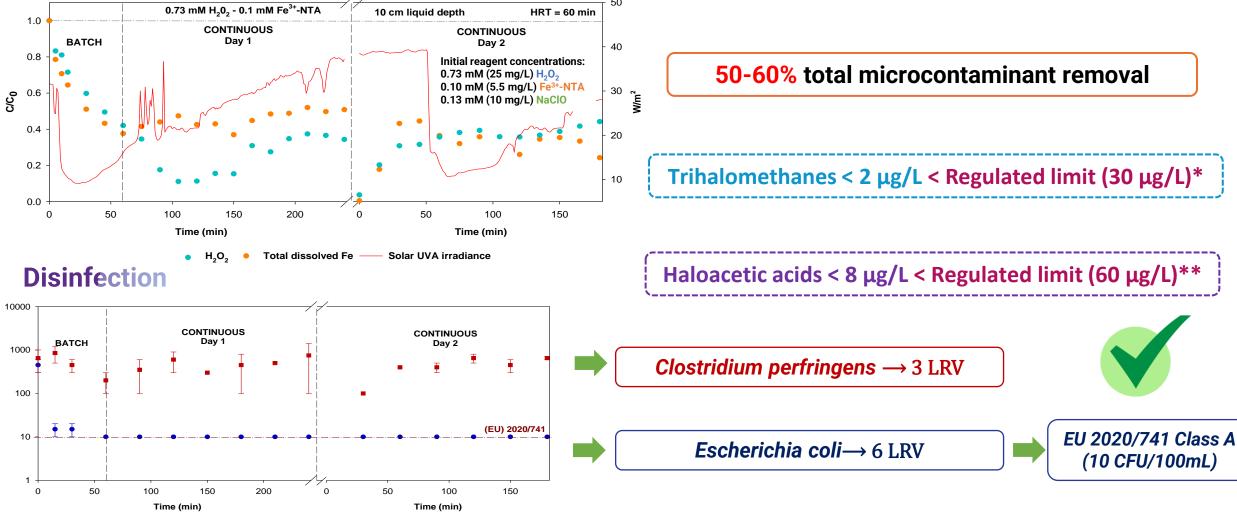

Solar photo-Fenton reactor in a rural area


Belachquer-El Attar et al., Journal of Hazardous Materials 132354 (2023)

Project PDC2021-121772-I00, funded by MCIN/AEI/10.13039/501100011033 and European Union "NextGenerationEU"/PRTR

ALTERNATIVE LOW-COST SUSTAINABLE TREATMENT

Belachqer-El Attar et al., Sci. Total Environ. 834: 155273 (2022)



CFU/100 mL

SOLAR CLOR-PHOTO-FENTON

H₂O₂ consumption, total dissolved Fe and solar UVA irradiance

Escherichia coli Clostridium perfringens

*Norme tecniche per il riutilizzo delle acque reflue, 99, 1, 3 aprile 2006, n. 152.

Shadow prices and environmental benefit

Shadow prices reflect the monetary value of environmental damage that would occur if effluents were discharged into the environment without removing microcontaminants

Table 1. Shadow prices values for various criteria (€/mg).							
Criteria	Scenario	Iomeprol	Oxypurinole1	Gabapentin	Tramadol	Venlafaxine	
Min D(x,u)	16	0.0032	0.0064	0.4933	0.0608	0.0010	
Med D(x,u)*	8	0.0205	0.0410	6.8306	0.8153	0.0068	
Max D(x,u)	3	0.0420	0.0840	13.7053	1.6369	0.0140	

Note: Prices calculated based on values from the D function (x,u), with a market price assumed for reclaimed water (desired output) of $0.593 \notin m^3$.

(*) Scenario 8 is the closest to the mean values of the shadow prices obtained.

Shadow prices and environmental benefit

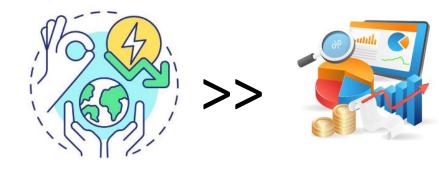


 Table 2. Evaluation of economic and technical-environmental benefits of wastewater treatment.

Scenario	Production capacity	Total income	Total costs	Economic benefit	Technical- environmental benefit	Overall benefits
	(m³/year)			(€	E/year)	
1	21312	12638.02	10021.60	2616.41	265337.68	267954.10
2	31968	18957.02	15304.17	3652.86	452711.59	456364.45
3	42624	25276.03	22628.11	2647.92	659924.95	662572.86

Utilizing the regenerated water for irrigation generates a total economic benefit of €2,616.41/year, in addition to an environmental benefit based on the monetization of positive externalities, valued at €265,337.68/year.

Environmental Benefits

UNIVERSITY OF ALMERÍA, SPAIN

NEREA LÓPEZ

DANIEL RODRÍGUEZ

PAULA SORIANO

JOSÉ LUIS GARCÍA

ANA AGÜFRA **JOSÉ ANTONIO**

JOSÉ LUIS CASAS PATRICIA PLAZA **GUADALUPE PINNA**

ELISABETH **GUALDA**

GUILLERMO CABRERA

SOLAIMA

BELACHOER

Phoenix

Upgrading Wastewater **Treatment Plants by Low Cost Innovative Technologies** for Energy Self-Sufficiency and Full Recycling. (LIFE ULISES)

Innovative Cost-effective Multibarrier Treatments for **Reusing Water for** Agricultural Irrigation (LIFE PHOENIX)

**** * * ***	
	E BA
Solar Facilitie	s for the European Research Area

SÁNCHEZ

SFERA III Solar Facilities for the European Research Area

Regeneración de Agua **Residual Urbana Mediante** Nuevos Materiales y **Tecnologías Solares** Avanzadas Operadas en Continuo: análisis de nuevos indicadores de calidad del tratamiento (NAVIA)

Demostración de Reactores Continuos para Foto-Fenton Solar Destinados a la **Regeneración de Efluentes** Secundarios de EDAR (ANUKIS)

OANUKIS

Junta de Andalucía Consejería de Universidad, Investigación e Innovación

Regeneración de Aguas para **Riego Mediante Energía Solar** en Reactores de Bajo Coste Operados en Modo Continuo (AQUELOO)

Thank you!

Solar Energy Research Center (CIESOL)

Contact: José Antonio Sánchez Pérez

jsanchez@ual.es